This site uses cookies, including those from third parties, in order to improve your experience and to provide services in line with your preferences. By closing this banner or by clicking on any of the links it is assumed that you consent to the use of cookies. To find out more about the IDS Privacy Policy, click on the link provided.


Optimization of the Performance of UHF Radiators Installed On-board Spacecraft using Numerical Methods

M.Bandinelli, R.Guidi, G.Vecchiarelli, P.Noschese, R.Mizzoni

Abstract: Satellite uplink antennas for SHF band communicationsmay require high resolution adaptive nulling capabilityto provide sufficient pattern gain to desired users while maintaining pattern nulls on interference sources in close proximity to the users.Multiple beams antennas (MBA) consisting of an aperture illuminated by a collection of feeds located in its focal plane and a beam-forming network (BFN) for combining the outputs of the feed array are well-suited as nulling antennas for geosynchronous satellites. Demanding nulling performances in terms of interfering signals cancellation requires an accurate pattern prediction down to sidelobe level and a high cross-polar isolation of the radiated element beams. To meet these requirements, design methods and analysis tools have been employed that take into account the electromagnetic interaction among the feeders and the satellite structures. In the qualification phase of an SHF nulling MBA at AASI, the pattern measurements have shown an unpredicted cross-polar level due to the interaction of primary radiated field with the surrounding structures. This paper reports the main steps of the AASI and IDS activity in optimizing the antenna position and the shape of some antenna-farm structures in order to improve the cross-polar performance while considering mechanical constraints. The electromagnetic analyses have been carried out employing different numerical techniques to validate the results and reduce the risks of satellite structural modifications. The numerical techniques, the optimization procedure and measured results arereported and discussed.

Published on European Conference on Antennas & Propagation (EuCAP2006)

For more information on this paper, please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.